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Bloch Electrons in a Uniform Magnetic Field* 
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(Received 29 August 1963) 

The physical periodicity of a space lattice is not destroyed by the presence of a uniform magnetic field. 
It is shown that a ray group of unitary operators, isomorphic to pure translations, commutes with the 
Hamiltonian in this case. Such a group has the characteristic property that AB = exp[i^>(AiB)2Ci where A, 
B, and C are elements of the group and <f> is a numerical factor. Representation theory applied to this group 
yields the characteristic degeneracies of levels in magnetic fields, as well as the transformation properties of 
eigenfunctions. By means of these it is possible to construct an effective Hamiltonian appropriate to finite 
magnetic fields in crystals. 

1. INTRODUCTION 

THE theoretical understanding of the behavior of 
electrons in crystalline potentials is enormously 

simplified by virtue of the invariance properties of the 
Hamiltonian under the operations of the space group. 
The well-known Bloch form of the eigenfunctions is a 
consequence of invariance under lattice translations. 
Although these solutions are no longer appropriate 
when the solid is perturbed, it is often possible to take 
advantage of the periodic part of the Hamiltonian by 
use of the effective Hamiltonian formalism.1 In its 
simplest form this procedure consists of replacing the 
effect of the unperturbed Hamiltonian by an operator 
E(P) obtained from an energy band E(fik). This 
procedure is not directly applicable to the case of 
magnetic fields. Onsager2 had suggested an effective 
Hamiltonian of the form Hett(P+eA/c), where A is the 
vector potential in some arbitrary gauge. Kohn3 demon
strated the validity of such an expression, if one allows 
the functional form of the Hamiltonian to depend on 
the magnetic field B. His paper and similar more recent 
ones4,5 make use of an expansion in powers of the 
magnetic field strength B, so that the results may be 
valid only in an asymptotic sense. 

A different approach has been taken by Wannier and 
Fredkin.6'7 Their procedure makes use of the fact that, 
in a certain sense, periodicity is not destroyed by a 
uniform magnetic field. Thus, they postulate the 
existence of B loch-type eigenfunctions, which reduce to 
Bloch functions when the magnetic field is reduced to 
zero. These functions were first introduced by Harper8 

who showed that they have transformation properties 
appropriate to a periodic lattice in a uniform magnetic 
field. 
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The present paper is similar in approach to that of 
Wannier et al., in that it makes use of the periodicity 
that exists in the presence of a uniform magnetic field. 
There is a simple physical way to see why there should 
be a type of translation operation under which the 
Hamiltonian is invariant, even though it is not invariant 
under pure spatial translation. Classically, if one were 
to transport a particle of charge q from one point of a 
periodic lattice to an equivalent one, it would be 
necessary to exert a force along the way, given by 

F=-g(vXBA), (1) 

in order to cancel the effect of the magnetic field, so 
that the charge is in an equivalent state of motion at 
the new site. Integrating Eq. (1) with respect to time 
yields an expression for the impulse which must be 
provided in transporting an electron through a lattice 
displacement Rn, 

I = - ? ( R W X B A ) . (2) 

This impulse corresponds to the shift in kinetic 
momentum rc=P— qk/c which must be provided, in 
addition to the shift in position, to leave the charged 
particle in an invariant condition. In a quantum 
mechanical formalism one should therefore expect 
that the operators which commute with the Hamiltonian 
are not pure spatial translations, but rather, those 
which incorporate the corresponding momentum shift. 
This turns out to be the case. The form of the operator 
which carries this out is the product of the translation 
operator and the Peierls' phase term.9 These operators 
will be referred to as magnetic translation operators, 
since they depend on the field and become pure trans
lations as the field approaches zero. 

The set of magnetic translation operators does not 
quite form a group since the product of any two of 
them is not necessarily one of the set. However, in all 
cases the product only differs by at most a multipli
cative factor of magnitude unity. The operators may 
be said to form a group up to a factor, or more simply 
a ray group. It thus turns out to be possible to make 
use of all the powerful tools of the theory of group 
representations in the treatment of electrons in uniform 

9 R. Peierls, Z. Physik 80, 763 (1933). 
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magnetic fields and periodic potentials. It is the object 
of this paper to exploit these methods to show: (1) to 
what extent degeneracy of energy levels is a function 
of the magnetic field B, (2) the transformation proper
ties of the energy eigenfunctions, (3) the existence of 
an effective Hamiltonian of the Onsager form. Some 
of these results have been reported elsewhere.10 In a 
recent paper, Fischbeck11 has made use of magnetic 
translations to investigate points (1) and (2). The 
approach used in the present treatment is group 
theoretical and in a form more convenient for general
ization. 

One of the obstacles encountered by Wannier and 
Fredkin,6 in establishing the existence of an effective 
Hamiltonian, was the lack of an orthonormal set of 
basis functions on which to base the formalism. The 
group theoretical approach used here clearly establishes 
the existence of such a set of functions, which are the 
magnetic analog of Wannier functions. This makes the 
existence proof simple for arbitrary fields. Still a further 
benefit from formulating the problem on a group 
theoretical basis stems from the fact that the results 
are independent of any approximation. Thus, for 
example, the results may be carried over to a many-
particle formulation. 

2. THE MAGNETIC TRANSLATION OPERATORS 

The Hamiltonian for an electron in a periodic 
potential and a uniform magnetic field is 

H = (l/2m) (¥+eA/c)2+ V(r), (3a) 

A = - i ( ' X B ) , (3b) 

where A is the vector potential. This gauge is selected 
for convenience. There is no loss of generality in this 
choice, since the results for an arbitrary gauge may be 
obtained by performing a gauge transformation on the 
resulting eigenfunctions. We shall use this gauge 
throughout this paper. The components of (P+eA/c) 
do not commute with one another. This fact is re
sponsible for the peculiar structure which the eigen
functions have. However, a direct calculation yields12 

C(P-.AA),, (P+«AA)y] = 0; i, .7=1,2,3, (4) 

from which it follows that an arbitrary function of 
Tf+eA/c commutes with one of Y—eA/c. 

We define a magnetic translation operator, 

r(Rn) = exp[-;Rw . (P-eAA)/*] , (5) 

which clearly commutes with the first term in the 
Hamiltonian. In the absence of a magnetic field, A 
vanishes and this reduces to a pure translation operator 

T(Rn) = exp[-*Rn .P/ft3, (6a) 

T(R»)*(r) = iKr -R n ) . (6b) 
10 E. Brown, Bull. Am. Phys. Soc. 8, 256 (1963). 
11 H. J. Fischbeck, Phys. Stat. Solidi 3, 1082 (1963). 
12 This result is valid in the gauge of Eq. (3b). 

Using Eqs. (3), (5), and (6) we have, for an arbitrary-
function ^(r), 

r(Rnty(r) = exp[-fcRB. (rX B ) / 2 ^ > ( r - Rw) 
= exp[>H(RwX ff) - r / 2 > ( r - R.) , (7) 

where §=eB/tic. This result follows from the fact that 
the two terms in the exponent of Eq. (5) commute with 
one another.12 It then follows that 

[ r ( R „ ) , # ] = 0 , (8) 

where Rn is an arbitrary lattice vector. This important 
result allows one to make use of group theory in this 
problem. The situation differs from the zero-field case 
in two important ways: (1) the magnetic translations 
do not commute with one another and (2) the product 
of an arbitrary two magnetic translations is not 
necessarily one of them. In order to see this we write 

r(Ror(R2) 
= exp[(f/2)(RiX8)T]T(R0 

Xexp[(V2)(R2X5)T]T(R2) 
= exp[(V2)[(Ri+ R2) X ff] • r]T(R0T(R2) (9) 

Xexp[(-*/2)(RiX6)-Ri] 
= T(Rx+R2) exp[(-V2)(RiXR2) .0] . 

Using Eq. (9) twice we find 

r(Ri)r(R2)=r(R,)r(Ri) expC-i(R1xR2)-ff]. (10) 
It follows from Eq. (9) that the product of any sequence 
of magnetic translations that form a closed path is 
e**, where 0 is a real number proportional to the mag
netic flux through the path; </>=flux (e/2tic). 

The ray group of magnetic translations is as basic 
to the study of magnetic-field problems as the simple 
translation group is to the perfect crystal. It follows 
from Eq. (8), if an energy eigenvalue is If-fold de
generate, with eigenfunctions \f/m, that 

M 

r ( R w ) ^ = l A m ( R n ) ^ . ( i i) 

From Eqs. (9) and (11) it follows that the matrices 
D(Rn) satisfy 

D(R1)J9(R2) = Z)(R1+R2) 
Xexp[(-i/2)(R1XR2)-g] (12) 

and thus form a ray representation of the translation 
group. 

Up to this point we have been dealing with an infinite 
crystal and an infinite group. It is convenient to work 
with finite groups for the purpose of examining ir
reducible representations. To this end it is worthwhile 
to explore the possibility of applying appropriate 
boundary conditions to a finite crystal so as not to 
destroy the group properties. We, therefore, restrict 
our attention to a finite lattice of dimensions iViai, 
N2SL2, iV3a3, where ai, a2, a3 are primitive translation 
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vectors. The natural generalization of the Born-von 
Karman boundary conditions is to restrict the eigen-
functions to go into themselves under magnetic trans
lations corresponding to the full finite lattice. 

r(tf<a<V=*; i = l , 2 , 3 . (13) 

In the zero-field case Eq. (13) reduces to the Born-von 
Karman boundary conditions. There is an essential 
difference between the magnetic and the zero-field 
cases, however. In the zero-field case, if one of the 
eigenfunctions in the infinite lattice goes into itself 
under some macroscopic translation, then so do all the 
functions obtained from it by lattice translations. This 
result does not carry over to the magnetic translations. 
This can be seen from the following. Assume ^ is an 
eigenfunction satisfying the boundary conditions of Eq. 
(13). The functions, 

$m=T(Rm)^, (14) 

are then also eigenfunctions. Then from Eq. (10) it 
follows that 

r(Ar
<a<)*m= e x p [ - ^ ( a « X R») • &]*m. (15) 

From this it follows that Eq. (13) can be satisfied for 
all functions simultaneously only if 

Ni(*iX R»)• g=Multiple of 2TT. (16) 

It follows from Eq. (16) that magnetically periodic 
boundary conditions13 can only be invoked if (3 is of the 
form 

5=R27rQ-1//N, (17) 

where 0 is the volume of a primitive cell, R is some 
primitive lattice vector,14 and / and N are integers with 
no common factor. The magnetic field must therefore 
be in the direction of some lattice vector. 

We shall assume Eq. (17) to be fulfilled and examine 
its consequences in the next section. 

The artificial conditions expressed by Eqs. (13) and 
(17) are imposed for the sake of dealing with a finite 
group and should be regarded in the same spirit as the 
imposition of Born-von Karman boundary conditions 
in the zero-field case. The physical boundary condi
tions in a finite crystal are quite different from those 
imposed here. However, if one seeks bulk properties 
the actual boundary conditions are of little consequence. 
It is necessary, of course, to recognize for weak mag
netic fields, for which the classical orbits of electrons 
can be large, that the physical size of the specimen 
should be large in order for the results of such a theory 
to be applicable even at the absolute zero of tempera
ture. It is shown in Sec. 4 that the boundary conditions 
yield the correct number of states. 

13 In what follows we refer to the condition of Eq. (13) as 
magnetically periodic. 

14 Any lattice vector of the form 2 men, for which there is no 
factor common to all m, is primitive. 

3. IRREDUCIBLE REPRESENTATIONS 

The magnetic translations are unitary operators. 
From this it follows that the matrix representations 
are unitary, if the basis functions are orthonormal. It 
is a straightforward matter to show that all the theo
rems leading to the derivations of the orthogonality 
relations for unitary representations of groups15 are 
also applicable to the ray representations discussed 
here. These derivations are carried out in the Appendix. 

One of the consequences of the orthogonality rela
tions is that the sum of the squares of the dimensionali
ties of the irreducible representations equals the order 
of the group. Moreover, if the sum of the squares of 
the magnitudes of the traces of the matrices of a given 
representation equals the order of the group, the repre
sentation is irreducible. These two statements are 
sufficient to determine all the irreducible representa
tions of the finite group under discussion. 

Assuming Eq. (17) to hold, there is no loss in choos
ing the primitive vector a3 to be along the magnetic 
field, 

5=(2ir/0)(//tf)ai. (18) 

The commutation relations between the magnetic 
translations corresponding to the primitive translations 
are then given by 

Cr(aI),r(a1)]=[r(a,),r(a2)]=o, 
T(a1)T(a2) = e-^NT(a2)T(a1), (19) 

The smallest crystal size for which it is possible to 
impose magnetically periodic boundary conditions is 
essentially two dimensional, being one unit cell thick 
in the a3 direction. It is N by N in the ai, a2 plane. The 
group thus consists of N2 operations. This domain, 
being the smallest one for which periodic boundary 
conditions can be applied, is conveniently called the 
magnetic unit cell. 

For this special case consider the N by N matrices 

X>/*(a8) = */ ,*=0/*(O), 

Djk(a1) = dJtke
tU-1)2*l,N'> h *= 1, 2, 

Djk(a2) = dj,k-i; (modN). 

N, (20) 

The remaining matrices in the representation can be 
found by application of Eq. (12). Thus, 

I>y*(niai) = 8y.^ (^1 ) 2 l r l n l^, (21) 
#ifc(»2a2) = fy,fc-nj. 

From these we can find the general matrix 

Djk(niai+n2a2) = expp»i»88 • (aiX a2)/2] 
X L DJ™ (mai)Dmk(w2a2), 

( ln\ 1 
= exp| fa—[>2+2 0'— 1)] 

l_ N J 
16 See, for example, E. P. Wigner, Gruppentheorie (Frederick 

Viewegund Sohn, Braunschweig, Germany, 1931) [English transl.: 
J. J. Griffin, Group Theory (Academic Press Inc., New York, 
1959)]. 

»/,*-»,; (modiV). (22) 
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These matrices form a representation of the given 
group. Moreover the traces of all the matrices are 
zero, with the exception of the one corresponding to 
the identity, which has a trace of N. The sum of the 
squares of the traces is thus N2, which is the order of 
the group. The representation is therefore irreducible. 
Moreover, the square of its dimensionality is also N2, 
which means there can be no other nonequivalent ir
reducible representation. 

In summary, for the group of N2 elements corre
sponding to putting magnetically periodic boundary 
conditions on the magnetic unit cell, we find only one 
irreducible representation of dimensionality iV. For this 
special case all the eigenvalues are iV-fold degenerate. 
A set of partner functions for this representation may 
be obtained by use of group projection operators.15 

The first partner will be of the form 

/o ( r )=n£« .Ai*(R. )T( lU«( r ) , (23) 

where g(r) is an arbitrary function,16 and f\ is a normal
ization coefficient. The labels of the partners are chosen 
from zero to iV—1, rather than unity to N, for con
venience in what follows. Making use of Eq. (22) we 
find 

/o ( r )=*£r («a i )*W- (24) 
n«=l 

The other partners of the given representation are 
simply related to one another by 

T(~-tna2)fn(r) = frn+n(r); (modN), (25) 

r(a1)/n(r) = ^ 2 - ^ / n ( r ) . (26) 

The choice of basis functions for a degenerate repre
sentation is not unique. The fact that Eqs. (25) and 
(26) place translations along ai and a2 on a different 
footing is due to the special choice of D(ai), D(a2). An 
equivalent representation could be found which inter
changes the roles of ai and a2. 

The limitation to a single magnetic cell is easily 
relaxed. Consider a crystal, with magnetically periodic 
boundary conditions, of dimensions iViai, iV2a2, N&z, 
where Ni=MiN, Nz^MJSf, and the magnetic field 
is oriented as before. We can form new representations 
for the larger group of NiN^Nz operations from the 
one already discussed. For this group there are MiMJSfz 
representations of dimensionality N. The matrices cor
responding to the translations ai, a2, and a3 differ 
from those already given only by a phase factor. These 
representations can be labeled by a vector with re
ciprocal space components of qi, q2, q3. Thus 

D^mg-wDia,); ;=1,2,3, (27) 

16 The function g(r) is not completely arbitrary. If it were 
orthogonal to the first partner by virtue of symmetry, its pro
jection would be zero. 

where the possible values of qi are given by 

qi=2irCi/(Niai); *=1, 2, 3 

C i = 0 , l , . . - , J f i - l ; C 2 = 0 , l , . . - , J f , - l ; (28) 

It should be noted that the spacing of the q vectors is 
the same as the zero-field k vectors, being governed 
by the crystal dimensions. However, the domain of q, 
is reduced in the ai and a2 directions by a factor N. 
It is seen that this result is consistent with the identi
fication of the domain of dimensions iVai, iVa2, a3 as 
a magnetic unit cell. 

Using projection operators once again, it is found 
that 

foqOd = VJl ni,n2,nz 

X exp[+i (qinidi+qzfizaz+ q^n^Na^ ] 
X T(n1a1)T(nzaz)T(n2Na2)g(r), (29) 

which is a generalization of a Bloch sum. In addition 

/mq(r) = e-tm**a*T(- ma2)f0*(r). (30) 

From these relations it follows by a straightforward 
calculation that 

r(-R„)/M*(r) 
= exp{Cq+(^+^/2)(5Xa2)] .RM}/^n 2«(r) , (31) 

where Rw=^iai+^2a2+w3a3. This equation completely 
specifies the transformation properties of the basis 
functions of the irreducible representations. 

There is an alternative way of labeling the functions 
so as to show their superficial resemblance to Bloch 
functions. For this purpose we define 

£(r ;q+mgXa 2) = /m<(r). (32) 

In terms of these functions Eq. (31) becomes 

r ( - R n ) S ( r ; k ) 
= exp{Ck+gX^2a2/2].Rw}^(r; k+$X/*2a2). (S3) 

The domain of k and q are different. The vector q is 
restricted to a magnetic zone, which is a Brillouin 
zone, for a lattice in which the magnetic cell plays the 
role of unit cell. It is thus smaller than the Brillouin 
zone by a factor N2. The domain of k is extended in 
the #i* direction by a factor N, so that its domain is 
smaller than the Brillouin zone by a factor N. 

It is to be emphasized that the form of Eq. (31) is 
a result of the special choice of gauge, and the arbitrary 
choice of basis functions within a degenerate set. The 
function B(t; q) goes into itself, times a phase factor, 
under the magnetic translations which are confined to 
the lattice plane normal to a2*. Under magnetic trans
lations to the mth neighboring plane, the vector index 
k changes to k' = k+(3Xw2a2+K. The last term in the 
sum corresponds to a translation in reciprocal space 
necessary to bring k' into the first zone. 



A1042 E. BROWN 

It is instructive to examine what happens in the 
limit as the size of the crystal becomes infinite. In this 
case the spectrum of allowed wave vectors q (or k) 
becomes quasicontinuous, being a function only of the 
crystal dimensions. The energy is then a continuous 
function of k. This can be called a magnetic subband. 
Thus, a band splits, under the influence of a magnetic 
field; into iV-magnetic subbands. 

In general one can expect these subbands to group 
into clusters. This follows from the fact that N, and 
the domain of q can change drastically for infinitesimal 
changes in B. For example, if B changes to B(Af — 1)/M, 
where M is a large integer such that l(M— 1) and NM 
have no common factor, then the degeneracy changes 
from N to NM. The number of subbands has thus 
been changed by a factor M. However, the level 
density really hasn't changed much since the perturba
tion is small. This effect has an analog in the zero-field 
case. Suppose, for example, in a one dimensional lattice 
every Mth cell had its potential altered infinitesimally. 
The lattice constant would increase by a factor M and 
the domain of k would be reduced by the same factor. 
Thus, there would be M of the newer bands in place 
of the original one with only an infinitesimal change in 
the density of states. In the energy range occupied by 
a single band there then would be M bands of smaller 
extent. The resulting energy spectrum would then 
consist of clusters of M bands. In the magnetic case 
we may expect a similar phenomenon in the clustering 
of magnetic bands. The empty lattice results of the 
next section support this point of view. 

4. THE EMPTY LATTICE 

The theory discussed above is applicable to the case 
of a vacuum, for which exact results are available. 
When the appropriate boundary conditions are applied, 
it is convenient to refer to the vacuum as the empty 
lattice, a special case useful for testing a theory. The 
Schrodinger equation in the gauge of Eq. (3b) for a 
magnetic field in the z direction is, in atomic units, 

/ # fy\ p2 

- VV+#( y *—)+—(x2+y2)t=E$, (34) 
\ dx by J 4 

with solutions, 

fk^k^tnly-kx/fte-WwtoeW*^***, (35a) 

where <f>n satisfies the harmonic oscillator equation, 

- d2<t>n/dy2+^<l>n=En<t>n, (35b) 
and 

En=(2w+l)/3+&0
2. (35c) 

These solutions are a complete set of linearly inde
pendent functions. The infinite fold degeneracy should 
be noted by the fact that the energy is independent of 

We pick a Cartesian unit cell of sides a, b, c. The 
operations Tx(a), Ty(b), Tz(c) designate magnetic 
translations along x, y, z of amounts a, b, and c 
respectively, 

Tx(a)f(x,y7z) = f(x-a, y, z)e~i^\ 

Tv(b)f(x,yyz) = f(x, y-b, z)eW>*», (36) 
Tv(c)f(%,y,z)=f(%, y, *-c). 

These operators are applied to the solutions of Eq. (34) 
with the results 

Tx(a)^kx,kg
n=e-ik^kx>]Cz

n, (37a) 

Ty(b)rpkxtkt
n^kx+^btkz\ (37b) 

Tz(c)^kxtkg
n==e-^crpkx,k-. (37c) 

Since the z dependence is of no interest, being the 
same as in the zero-field case, we shall neglect it. If we 
want the eigenfunctions to be invariant to Tx(Nid), 
we must restrict ^ to be a multiple of 2ir/(Nia) as in 
the zero-field case. In addition, we must require 
(kx+l3b) to be of this form also, so that 

Pab=2TTII/NI=2*1/N, (38) 

where l/N is the reduced form of h/N\. From Eqs. 
(37) and (38) it is found that 

Ty(Nb)tk«=^2«aan- (39) 

This function has the same transformation properties 
under Tx and Tz as does y//kx

n. The functions \f/kx
n do 

not yet have the proper periodicity under Ty but the 
superposition of degenerate functions given by 

«*. .*/= E eMyNbTy(mNb^kx
n 

=Em eimk*Nh#kr-*™i/on, (40a) 

satisfies the relation, 

Ty(Nb)Bkxtky=e-W>Bkx,kp (40b) 

as well as Eqs. (37a), and (37c). In Eq. (40a) the 
domain of kx can be easily seen to be from zero to 
l(2ir/a), whereas the domain of ky is zero to 2ir/Nb> 
corresponding to an effective translation distance Nb. 

It should be noted that it is only in the empty lattice 
that a meaning can be attached to a value of kx greater 
than 27r/a. Those differing by (2w/a) are in different 
but equivalent representations. We thus have each 
representation appearing / times with a single energy. 
In other words, we have / sub-bands clustered. In this 
special case, all the states in a cluster, as well as the 
clusters themselves are degenerate. The functions 
Bkx,ky

n are of the type described in the previous section, 
satisfying periodic boundary conditions. For a given 
value of n there are IN1N2/N degenerate states. The 
coarse grained density of states associated with the 
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x-y motion is thus INiNz/QNp). Using Eq. (38) it is 
found that g(E) = (Nia)(N2b)/4:ir, which agrees with 
that of the zero-field case. Thus, the magnetic periodic 
boundary conditions do not cause difficulties in this 
respect. 

It is worth noting that the infinite-fold degeneracy 
of the energy eigenvalues in a magnetic field in empty 
space can be demonstrated simply from the group 
properties. Since we can pick the lattice constant arbi
trarily, we can select a and b for a given field such that 
Pab=2ir/N, where N is an arbitrarily large integer. 
Each representation is then iV-fold degenerate, so that 
in the limit as (ab) is made arbitrarily small the de
generacy becomes infinite. 

5. EFFECTIVE HAMILTONIAN 

An effective Hamiltonian can be most easily derived 
by showing the existence of a set of functions which 
are the magnetic analog of Wannier functions. De
noting a particular one of these functions by A (r) we 
define 

;4(Rn;r) = r (R n M(r) . (41) 

It will be shown that there exist functions -4(R»; r) 
which form an orthonormal set, and which also span 
the space of the eigenfunctions of the magnetic-field 
Hamiltonian arising from a single band. Once this is 
done, the demonstration that an effective Hamiltonian 
exists, follows the procedure of Wannier.6 

It should be remembered that in the magnetic field 
all representations are N by N. Also, each representa
tion appears N times in the states arising from a single 
band. Using the notation of Eq. (30) the various 
eigenfunctions can be denoted by ^m,»q. The first sub
script designates the partner in the q representation 
and n labels the magnetic band. Both m and n take on 
N different values. Let 

A (r)= (N/N1N2Nz)^ £ «,,**,««. (42) 

Then from Eq. (31) it follows that 

A (R„; r)= (N/N1N2N^2 Z »,q 

X e x p { - C q + ( ^ - W 2 ) ( 5 X a 2 ) ] - Rn)K-n^ (43) 

and the orthonormalcy can be seen from 

In.n>= [A*(Rn'l*)A(Rn;i)fflr 

Xexp{i[q+(w-»a72)(ffXa,)]-JRn' 

- C q ' + K - W 2 ) ( 5 X a 2 ) ] . R n } 

(44) 

The Kronecker delta Sn2,ni' is to be interpreted 

modulo N. The domain of q is the magnetic zone. Thus, 

W2.W2 

Xexpp(0Xa2)- (^2Rw-^2'Rw<)/2] 
^N/iNxNJft) E ke*k-(R»'-lu)*nw 

Xexpp(gXa2) • (w2R»-»2'R»0/2]. (45) 

This clearly vanishes if Rw^Rn/. The domain of k is 
shorter than the Brillouin zone by a factor N in the 
a2* direction, and thus contains N\N2Nz/N states, 
yielding 

/w,n' = 5Rn,Rn/, (46) 

which is the orthonormality condition. The number of 
functions is clearly the same as the number of states 
in a single band, neglecting the factor of two for spin. 
They are thus capable of playing the same role as 
Wannier functions, in the construction of an effective 
Hamiltonian. 

Let 
^ = £ / ( R » M ( R w ; r ) . (47) 

The coefficients f(Rn) must satisfy 

£#m,TO/(R„) = £/ (R w ) , (48) 

in the absence of a perturbation. In the above equation 
Hm>n is the matrix element of the Hamiltonian between 
two functions A (Rw; r) and A (Rn; r), 

flrm.n= (T(Rm)A(t),HT(Rn)A (r)). (49) 

Making use of the unitary and commutative prop
erties of the magnetic translations one obtains 

Hm,n=(A(Rm-Rn;r),HA(i)) 
Xexpp0.(RmXR„)/2] (50) 

= e(Rm- Rn) expftff• (RmXR»)/2], 

where e(Rm) = (A (Rm; r), HA (r)). Thus Eq. (48) takes 
the form 

E ne(Rm-Rn) exppg- (R*XR»)/2]/(K») 
= E »'€(Rn') exp[tff. (Rn,XR*)/2]/(IL-RnO 

= Zne(Rw)r_(Rn)/(Rw)=E/(Rm) . (51) 

In the above equation T-.(Rn) is the operator ob
tained from T(Rn) by replacing the vector potential 
by its negative. In using Eq. (51), /(Rw) is to be in
terpreted as a function of a continuous variable r, and 
the expression evaluated at r= Rm. 

From the definition of TL(R„) Eq. (51) becomes 

{ E ne(Rn) exp[-iRw . (P+eA/c)/h3}f(Rm) 

= Ef(Rm), (52) 

HM(?+eA/c)f(t) = Ef(r). 

It is a straightforward procedure to incorporate the 
effect of a perturbation, as is done in the usual effective 
Hamiltonians. One drawback to the utility of the effec
tive Hamiltonian as defined in Eq. (22), is that the 
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coefficients e(Rn) depend on the field. As was noted by 
Kohn3 this prevents one from taking experimental 
information at zero field and applying it directly to 
the magnetic problem. 

6. DISCUSSION 

Although group theory, by itself, cannot yield the 
energy spectrum of quantum mechanical systems, it 
does provide a useful tool in such an investigation when 
applicable. 

It is significant that group theory is still applicable 
when a solid is subject to a uniform magnetic field. In 
addition to establishing the essential degeneracies, and 
classifying states according to symmetry it can be used 
in connection with selection rules. Moreover, explicit 
numerical computations on level structure are usually 
greatly simplified by its application. 

There is no reason why the method must be re
stricted to the one electron approximation, since the 
Hamiltonian for the many-electron system is invariant 
under a similar ray group of operations. These opera
tors are just those which shift all the electronic co
ordinates and momenta simultaneously. It should also 
be possible to extend the theory to include spin and 
the effects of uniform electric fields. 
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APPENDIX 

The theorems which lead up to the orthogonality 
relations for the irreducible representations of a group 
are here derived for the ray representations encountered 
in this work. 

Theorem 1. Any ray representation by nonsingular 
matrices is equivalent to one by unitary matrices, 

Let the matrices D(i) be a ray representation, so that 

D(t)DV)=<*(i,j)D(k), (Al) 

where o)(i,j) is a complex number of magnitude unity. 
Define the positive definite matrix K, 

K=ZD(i)&(i). (A2) 

Let 

D{i)=K~WD(i)Kli\ (A3a) 

Then, making use of Eq. (Al) and (A2), it is found 

that 

D (0J5f (i) = K-MD (i)K& {i)K~w 
= K~w £ jD(i)D(j)&{j)tf{i)K-w (A3b) 

The matrices D(i) thus form a unitary representation. 
Theorem 2. Every matrix M commuting with all the 

matrices D(i) of an irreducible representation is a multiple 
of the unit matrix, 

The proof of this for ray representations is identical 
with that for ordinary representations.16 

Theorem 3. If Xi and X2 are two irreducible representa
tions of dimensions l\ and l2, respectively, and if there 
exists a matrix X such that XD*1(i)=DX2(i)X for each 
i then either (a) X is the null matrix or (b) h—h, and 
the two representations are equivalent. 

The proof of this also is identical with that for 
ordinary representations. 

Theorem 4, (Orthogonality relations) For two irreduci
ble unitary ray representations Xi, X2, 

E ^*X l(*)A»X l(*) = 8*.i«y.i»«xlix1g//, (A4) 

where g is the order of the group, and I is the dimensionality 
of either representation, 

Let 
AT=E RDHQXDHR-1) , (A5) 

where R labels a group element, and X is an arbitrary 
h by h matrix. Then, 

M=T, RD^iSKjXD^dSR)-1), (A6) 

since (SR) takes on all the elements of the group as R 
does, if S is an arbitrary element. 

From Eq. (A5), 

D^(S)M=Z RuiS&D^SRjXD^iR-1). (A7) 

From Eq. (A6), 

MD^(S) = Z RD^SKjXD^R-'MiSR)-1^-1), (A8) 

In the ray representation for the magnetic-field 
problem co(S,R) is given by exp [i(3- (R/eXR,s)/2] so 
that 

o>((SR)-\R-i) 
= e x p { ; K - R * X ( - R * - R s ) / 2 ] } (A9) 
= co(S,#). 

Thus, for these representations, 

D^(S)M=MDX*(S), (A10) 

so that M satisfies the conditions of Theorem 3. The 
remainder of the proof is identical with that for ordi
nary representations. 

The projection methods of representation theory 
may be derived in similar fashion. 


